

GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING

COMPETENCY BASED CURRICULUM

WIND PLANT TECHNICIAN

(Duration: Two Years)

CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL – 4

SECTOR - POWER

WIND PLANT TECHNICIAN

(Engineering Trade)

(Designed in March 2023)

Version: 1.0

CRAFTSMEN TRAINING SCHEME (CTS)

NSQF LEVEL- 4

Developed By

Ministry of Skill Development and Entrepreneurship

Directorate General of Training

CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE

EN-81, Sector-V, Salt Lake City, Kolkata – 700 091 www.cstaricalcutta.gov.in

CONTENTS

S No.	Topics	Page No.
1.	Course Information	1
2.	Training System	3
3.	Job Role	7
4.	General Information	8
5.	Learning Outcome	11
6.	Assessment Criteria	13
7.	Trade Syllabus	22
8.	Annexure I (List of Trade Tools & Equipment)	51

During the two years duration of Electrician-Power Distribution trade a candidate is trained on professional skills & knowledge, Engineering Drawing, Workshop Calculation & Science and Employability skill related to job role. In addition to this a candidate is entrusted to undertake project work and extracurricular activities to build up confidence. The Broad components covered during the course are given below:

FIRST YEAR: The trainee learns about safety and environment, use of fire extinguishers, artificial respiratory resuscitation to begin with. He/she gets the idea of trade tools & its standardization, identifies different types of conductors, cables & their skinning & joint making. Basic electrical laws like Kirchhoff's law, ohm's law, laws of resistances and their application in different combinations of electrical circuit are practiced along with laws of magnetism. The trainee practices on electric circuit for single/poly-phase circuits for 3 wire/4 wire balanced& unbalanced loads. Skilling practice on different types of operation and maintenance. Wiring practice with installation of different accessories like Iron Clad Double Pole (ICDP) switch, distribution fuse box and mounting energy meters and its fault detection are done by trainee. The trainee will practice for pipe & plate earthing. The trainee will practice on different types of measuring instruments like multimeter, wattmeter, energy meter, phase sequences meter, frequency meter, for measurement of electrical parameters in single & three phase circuits. He/she will gain skill on range extension, calibration and testing of meters. Practice for dismantling, assembling and testing of different electrical equipment and machines will be done by trainee. Skill will be gained on transformer for operation, efficiency, series parallel operation, replacement of transformer oil and combination of single-phase transformers for 3 phase operation. The trainee will practice on electrical rotating machines, induction motors, synchronous motors and alternators. The trainee will practice and understand the basic concept of Electronics diodes for bridge rectifier, switching devices & amplifiers by electronic components, testing by CRO, computer hardware, basic structure of programmable logic controller, Embedded Systems and basic functions of SCADA. The trainee will understand the basic concept of control system and communication electronics open loop and closed loop controller, Microprocessor, 8051 Microcontroller and difference between Inverters and UPS. The trainee will practice on distribution system, domestic service line and accessories & their protection by practicing on relay and circuit breaker for operation and maintenance. The trainee will get basics understanding of gear and gearbox, brakes, dynamometers, clutches, bearings, couplings, lubrication, hydraulics. The trainee will learn the basic knowledge on Nonrenewable and broadly on renewable energy systems. The trainees will also learn about the components of Wind Turbines and will acquire technical details of Wind power plant working.

SECOND YEAR: In this year the trainee will understand the details of wind turbine components and their electrical control circuits. The trainee will assemble parts of generator, gears, rings, hydraulics system and aerodynamics aspect of rotor blade. The trainee will work on Protection devices, sensors and transducers. The trainee will practice on electric motor maintenance. The trainee will study Power collection network and carry out wind resource assessment. The trainee will practice on Met- Mast, its erection, assembling and commissioning of sensor etc. The trainee will work on wind instrument system, collect wind data, and practice on their processing, validation, analysis and reporting. The trainee will practice on cranes, different slings and lifting jigs as well as signals for crane operators. The trainee will understand the concept of electrical and mechanical components in wind turbine. The trainee will learn about the installation and commissioning of wind turbines and understanding the operation and maintenance aspects of Wind Farms. The trainee will undergo practical orientation for 4-8 weeks in a working wind farm. The trainee will learn about environment and safety aspects of wind farms. The trainee will carry out maintenance, repair or replacement of faulty mechanical components and equipment's of WTG, transformer, switchgear etc. The trainee will understand the challenges and safety measures for transporting wind turbine components and working on heights with safety measures. The trainee will have Hands on training by building the small wind turbines wooden blades on their own.

2.1 GENERAL

The Directorate General of Training (DGT) under Ministry of Skill Development & Entrepreneurship offers a range of vocational training courses catering to the need of different sectors of economy/ Labour market. The vocational training programmes are delivered under the aegis of Directorate General of Training (DGT). Craftsman Training Scheme (CTS) with variants and Apprenticeship Training Scheme (ATS) are two pioneer schemes of DGT for strengthening vocational training.

'Wind Plant Technician' trade under CTS is one of the newly designed courses delivered nationwide through network of ITIs. The course is of two years duration. It mainly consists of Domain area and Core area. The Domain area (Trade Theory & Practical) imparts professional skills and knowledge, while Core area (Workshop Calculation and science, Engineering Drawing and Employability Skills) imparts requisite core skill, knowledge and life skills. After passing out of the training program, the trainee is awarded National Trade Certificate (NTC) by DGT which is recognized worldwide.

Trainee broadly needs to demonstrate that they are able to:

- Read and interpret technical parameters/ documents, plan and organize work processes, identify necessary materials and tools;
- Perform task with due consideration to safety rules, accident prevention regulations and environmental protection stipulations;
- Apply professional skill, knowledge & employability skills while performing jobs.
- Check the job/ assembly as per drawing for functioning identify and rectify errors in job/ assembly.
- Document the technical parameters related to the task undertaken.

2.2 PROGRESSION PATHWAYS

- Can join in wind industry as technician and will progress further as senior technician, Supervisor and can rise up to the level of Manager.
- Can become Entrepreneur in the related field.
- Can take admission in the diploma course in notified branches of Engineering by lateral entry.
- Can join Apprenticeship programs in different types of industries leading to a National Apprenticeship Certificate (NAC)
- Can join Instructor Training Program and become an instructor in ITIs.

2.3 COURSE STRUCTURE

Table below depicts the distribution of training hours across various course elements during a period of two-years: -

CNo	Course Element	Notional Training Hours	
S No.	Course Lientent		2 nd Year
1	Professional Skill (Trade Practical)	840	840
2	Professional Knowledge (Trade Theory)	240	300
3	Employability Skills	120	60
	Total	1200	1200

Every year 150 hours of mandatory OJT (On the Job Training) at nearby industry, wherever not available then group project is mandatory.

On the Job Training (OJT)/ Group Project	150	150
Optional Courses (10th/ 12th class certificate along with ITI certification or add on short term courses)	240	240

Trainees of one-year or two-year trade can also opt for optional courses of up to 240 hours in each year for 10th/ 12th class certificate along with ITI certification, or, add on short term courses.

2.4 ASSESSMENT & CERTIFICATION

The trainee will be tested for his skill, knowledge and attitude during the period of course through formative assessment and at the end of the training program through summative assessment as notified by the DGT from time to time.

- a) The Continuous Assessment (Internal)during the period of training will be done by **Formative Assessment Method** by testing for assessment criteria listed against learning outcomes. The training institute has to maintain individual *trainee portfolio* as detailed in assessment guideline. The marks of internal assessment will be as per the formative assessment template provided on www.bharatskills.gov.in.
- b) The final assessment will be in the form of summative assessment. The All India Trade Test for awarding NTC will be conducted by Controller of examinations, DGT as per the guidelines.

The pattern and marking structure is being notified by DGT from time to time. **The learning outcome and assessment criteria will be basis for setting question papers for final assessment. The examiner during final examination will also check individual trainee's profile as detailed in assessment guideline before giving marks for practical examination.**

2.4.1 PASS REGULATION

For the purposes of determining the overall result, weightage of 100% is applied for six months and one-year duration courses and 50% weightage is applied to each examination for two years courses. The minimum pass percent for Trade Practical and Formative assessment is 60% & for all other subjects is 33%.

2.4.2 ASSESSMENT GUIDELINE

Appropriate arrangements should be made to ensure that there will be no artificial barriers to assessment. The nature of special needs should be taken into account while undertaking assessment. Due consideration to be given while assessing for team work, avoidance/reduction of scrap/wastage and disposal of scarp/wastage as per procedure, behavioral attitude, sensitive to environment and regularity in training. The sensitivity towards OSHE and self-learning attitude to be considered while assessing competency.

Assessment will be evidence based comprising some of the following:

- Job carried out in labs/workshop
- Record book/ daily diary
- Answer sheet of assessment
- Viva-voce
- Progress chart
- Attendance and punctuality
- Assignment
- Project work
- Computer based multiple choice question examination
- Practical Examination

Evidences and records of internal (Formative) assessments are to be preserved until forthcoming examination for audit and verification by examination body. The following marking pattern to be adopted for formative assessment:

Performance Level	Evidence
-------------------	----------

(a) Marks in the range of 60 -75% to be allotted during assessment

For performance in this grade, the candidate with occasional guidance and showing due regard for safety procedures and practices, has produced work which demonstrates attainment of an acceptable standard of craftsmanship.

- Demonstration of good skill in the use of hand tools, machine tools and workshop equipment
- 60-70% accuracy achieved while undertaking different work with those demanded by the component/job.
- A fairly good level of neatness and consistency in the finish
- Occasional support in completing the project/job.

(b) Marks in the range of above 75% - 90% to be allotted during assessment

For this grade, the candidate, with little guidance and showing due regard for safety procedures and practices, has produced work which demonstrates attainment of a reasonable standard of craftsmanship.

- Good skill levels in the use of hand tools, machine tools and workshop equipment
- 70-80% accuracy achieved while undertaking different work with those demanded by the component/job.
- A good level of neatness and consistency in the finish
- Little support in completing the project/job

(c) Marks in the range of above 90% to be allotted during assessment

For performance in this grade, the candidate, with minimal or no support in organization and execution and with due regard for safety procedures and practices, has produced work which demonstrates attainment of a high standard of craftsmanship.

- High skill levels in the use of hand tools, machine tools and workshop equipment
- Above 80% accuracy achieved while undertaking different work with those demanded by the component/job.
- A high level of neatness and consistency in the finish.
- Minimal or no support in completing the project.

Equipment Manufacture, assembling and O&M forms the major industry in wind sector

Wind power plant installation Technician (Electrical): The wind power plant Installation Technician is responsible for installing electrical components of wind power plant.

Wind Power Plant Maintenance Technician (Electrical): He is responsible for maintenance and effective functioning of the installed wind power plant. The individual has to carry out the testing of transformers, switch Gear and protection devices.

Manufacturing technician associates manufacturing wind turbine components in industries, control equipment making, testing, quality checking, finishing, storing etc. also involves in making of support structures, sensors, SCADA systems, servomotors, blades, anemometers, control systems, instrumentation etc.

Service technician associates in operation and maintenance of wind farms, troubleshoots electrical and mechanical components in wind turbines; replaces defective components, reconditions wear out parts or structures, counsels better maintenance aspects to project owners.

Project developer/assistant associates in developing, erection, installing and commissioning wind turbine projects, coordinates logistics, data analysts, electrical, computer, mechanical and construction works, equipment transporters, monitors project completion etc.

Electrical and Electronic Equipment Mechanics and Fitters and Related Workers, Other; include all other workers engaged in fitting, assembling, repairing and maintaining electronic and electrical equipment, machinery, appliances, etc., not elsewhere classified.

Reference NCO-2015:

(i) 7419.9900 - Electrical and Electronic Equipment Mechanics and Fitters and Related Workers, Other

Reference NOS:

I.	CSC/N0304	XI.	PSS/N1707	XXI.	PSS/N9405
II.	PSS/N0108	XII.	CSC/N0901	XXII.	SGJ/N9401
III.	PSS/N6001	XIII.	ELE/N9432	XXIII.	SGJ/N9409
IV.	SGJ/N6001	XIV.	ELE/N5804	XXIV.	ISC/N9439
V.	SGJ/N0104	XV.	ELE/N9443	XXV.	SGJ/N9411
VI.	PSS/N6002	XVI.	SGJ/N9404	XXVI.	SGJ/N9410
VII.	PSS/N7001	XVII.	SGJ/N9405	XXVII.	PSS/N9401
VIII.	PSS/N2407	XVIII.	SGJ/N9406	XXVIII.	PSS/N9402
IX.	PSS/N1709	XIX.	SGJ/N9407		
Χ.	PSS/N0106	XX.	SGJ/N9408		

4. GENERAL INFORMATION

Name of the Trade	WIND PLANT TECHNICIAN
Trade Code	DGT/2020
NCO - 2015	7419.9900
NOS Covered	CSC/N0304, PSS/N0108, PSS/N6001, SGJ/ N6001, SGJ/N0104, PSS/N6002, PSS/N7001, ELE/4402, PSS/N2407, PSS/N1709, PSS/N9405, PSS/N0106, PSS/N1707, CSC/N0901, ELE/N9432, ELE/N5804, ELE/N9443, SGJ/N9405, SGJ/N9406, SGJ/N9407, SGJ/N9408, SGJ/N9404, SGJ/N9401, SGJ/N9409, ISC/N9439, SGJ/N9411, SGJ/N9410, PSS/N9401, PSS/N9402
NSQF Level	Level-4
Duration of Craftsmen Training	Two Years (2400 hours + 300 hours OJT/Group Project)
Entry Qualification	Passed 10 th class examination with Science and Mathematics or its equivalent.
Minimum Age	14 years as on first day of academic session.
Eligibility for PwD	This is the specialized course and requires technicians to work at heights and hence it is not desirable for PwD
Unit Strength (No. Of Student)	20 (There is no separate provision of supernumerary seats)
Space Norms	100 Sq. m
Power Norms	5 KW
Instructors Qualification for	
(i) Wind Plant Technician Trade	B.Voc/Degree in Mechanical/ Electrical/ Electronics and Instrumentation Engineering from recognized Engineering College/university with one year experience in the relevant field. OR Diploma in Electrical/ Mechanical/ Electronics and Instrumentation Engineering from recognized board of technical education with two years' experience in the relevant field. OR NTC/NAC passed in the Trade of "Wind Plant Technician" With three years' experience in the relevant field. Essential Qualification:

	Relevant National Craft Instructor Certificate (NCIC) in any of the variants under DGT.
	Out of two Instructors required for the unit of 2(1+1), one must have Degree/Diploma and other must have NTC/NAC qualifications. However, both of them must possess NCIC in any of its variants.
(ii) Workshop Calculation &	B.Voc/Degree in Engineering from AICTE/UGC recognized
Science	Engineering College/ university with one-year experience in the relevant field.
	OR
	03 years Diploma in Engineering from AICTE/recognized board of technical education or relevant Advanced Diploma (Vocational) from DGT with two years' experience in the relevant field.
	OR
	NTC/ NAC in any one of the engineering trades with three years experience.
	Essential Qualification:
	National Craft Instructor Certificate (NCIC) in relevant trade
	OR
	NCIC in RoDA or any of its variants under DGT
(iii) Engineering Drawing	B.Voc/Degree in Engineering from AICTE/UGC recognized
	Engineering College/ university with one-year experience in the relevant field.
	OR
	03 years Diploma in Engineering from AICTE /UGC recognized
	board of technical education or relevant Advanced Diploma
	(Vocational) from DGT with two years' experience in the relevant field.
	OR
	NTC/ NAC in any one of the engineering/ Draughtsman group of trades with three years' experience.
	Essential Qualification:
	Regular / RPL variants of National Craft Instructor Certificate (NCIC) in relevant trade

	OR
	Regular/RPL variants NCIC in RoDA or any of its variants under
	DGT
iv) Employability Skill	MBA/ BBA / Any Graduate/ Diploma in any discipline with Two
	years' experience with short term ToT Course in Employability
	Skills.
	(Must have studied English/ Communication Skills and Basic
	Computer at 12th / Diploma level and above)
	OR
	Existing Social Studies Instructors in ITIs with short term ToT
	Course in Employability Skills.
v) Minimum age for Instructor	21 years
List of Tools & Equipment	As per Annexure-I

Learning outcomes are a reflection of total competencies of a trainee and assessment will be carried out as per the assessment criteria.

5.1 LEARNING OUTCOMES

FIRST YEAR

- Plan and organize the work to make job as per specification applying different types of basic fitting operations and check for dimensional accuracy following safety precautions. [Basic fitting operations – Marking, Hack-sawing, Chiselling, Filing, Drilling, Threading etc. Accuracy: ± 0.25mm] (NOS: CSC/N0304)
- 2. Perform joining of electrical wires as per specification applying different types of operations like soldering, crimping and measuring of insulation resistance. (NOS: PSS/N0108)
- 3. Construct and verify characteristics of electrical and magnetic circuits. (NOS: SGJ/N6001, PSS/N6001, SGJ/N0104)
- 4. Assemble Electrical accessories and test charging and discharging of batteries. (NOS: PSS/N6002)
- 5. Assemble, install and test Wiring and Earthing system, check faults and carry out repairing of circuit breakers. (NOS: PSS/N7001, PSS/N6001, PSS/N6002)
- 6. Plan, execute commissioning, testing of AC & DC motors and carry out maintenance of transformer. (NOS: PSS/N2407, PSS/N1709)
- 7. Plan, connect, test, evaluate performance and carry out maintenance of synchronous motors, induction motors and alternator. (NOS: PSS/N9405)
- 8. Erect overhead distribution line and outline various power plant layout. (NOS: PSS/N0106)
- 9. Measure electrical parameters by using analog/digital measuring instruments. (NOS: PSS/N1707)
- Perform installation and check functionality of gear box, brakes, dynamometers, clutches
 & bearings, couplings and maintain lubrication system. (NOS: CSC/N0901)
- 11. Apply the basic parameters of hydraulics. (NOS: ELE/N9432)
- 12. Select the appropriate electronic components and check their performance. (NOS: ELE/N5804)
- 13. Construct and test circuits and communication components using microcontroller 8051. (NOS: ELE/N9443)
- 14. Prepare a report on renewable and Non- renewable energy technology and test a model wind turbine component and record the observations. (NOS: SGJ/N9404)
- 15. Read and apply engineering drawing for different application in the field of work. (NOS: PSS/N9401)

16. Demonstrate basic mathematical concept and principles to perform practical operations. Understand and explain basic science in the field of study. (NOS: PSS/N9402)

SECOND YEAR

- 17. Assemble parts of generator and gears used in Wind Turbine and test the performance. (NOS: SGJ/N9405)
- 18. Operate, troubleshoot and control the Hydraulic equipment used in Wind Energy Sector. (NOS: SGJ/N9406)
- 19. Demonstrate the working principle of Aerodynamics aspect of Rotor Blade. (NOS: SGJ/N9407)
- 20. Examine various types of wind energy generators and evaluate their performance. (NOS: SGJ/N9408)
- 21. Install, test, repair and maintenance of Generator and Electric Motor. (NOS: PSS/N9405)
- 22. Check the availability of wind in a place & prepare a feasibility report on site suitability for a project. (NOS: SGJ/N9404)
- 23. Measure Wind energy by using Sensors and install, operate and maintain Wind Sensor Instrument. (NOS: SGJ/N9401)
- 24. Perform Collection, Processing, Validation, Analysis and Reporting of Wind Data. (NOS: SGJ/N9409)
- 25. Demonstrate operating of Cranes, different slings, lifting jigs and Signals for crane operators. (NOS: ISC/N9439)
- 26. Perform installation, commissioning, operation and maintenance of wind turbine in a working wind farm. (NOS: SGJ/N9411)
- 27. Perform repair and replacement activities of electrical control parts and mechanical components of Wind Turbine Generator. (NOS: SGJ/N9410)
- 28. Evaluate the Challenges for transportation and setting-up of Wind turbine components at heights and under hazardous conditions. (NOS: SGJ/N9411)
- 29. Adhere to Environmental and Safety guidelines followed in wind power plant. (NOS: SGJ/N9411)
- 30. Read and apply engineering drawing for different application in the field of work. (NOS: PSS/N9401)
- 31. Demonstrate basic mathematical concept and principles to perform practical operations. Understand and explain basic science in the field of study. (NOS: PSS/N9402)

	LEARNING OUTCOMES	ASSESSMENT CRITERIA
		FIRST YEAR
1.	Plan and organize the work to make job as per specification applying different types of basic fitting operations and check for dimensional accuracy following safety precautions. [Basic fitting operations – Marking, Hack-sawing, Chiselling, Filing, Drilling, Threading etc. Accuracy: ± 0.25mm]. (NOS: CSC/N0304)	Identify the trade tools; practice their uses with safety, care & maintenance. Identification of danger, warning, caution & safety signs. Preventive measures for electrical accidents and use of fire extinguishers. Perform fitting jobs and Safety precautions. Identify and practice use of fitter tools and accessories. Perform filing true to line. Demonstrate Sawing and planning and use carpenter's common hand tools. Demonstrate and use types of drills, power drilling machines, care and maintenance. Perform on use of snips, marking & cutting of straight & curved pieces in sheet metals. Perform riveting practice in sheet metal. Perform in making different joints in sheet metal and soldering the joints. Demonstrate dismantling and assembling in D.C. Machine. Connect shunt generators and measure of voltage. demonstrate field excitation. Explain No load & load characteristics of series, shunt & compound generator - cumulative and differential. Perform controlling and protecting DC generator. Explain 3 point & 4-point starters, Connect, start, run, and control speed of DC motors.
2.	Perform joining of electrical wires as per specification applying different types of operations like soldering, crimping and measuring	Demonstrate skinning, twisting and crimping. Identify various types of cables and measure conductor size using SWG and micrometer. Make joints on single strand conductors. Perform crimping and soldering of joints/lugs.

	of insulation resistance. (NOS: PSS/N0108)	
3.	Construct and verify characteristics of electrical and magnetic circuits. (NOS: SGJ/N6001, PSS/N6001, SGJ/N0104)	Measure parameters in combinational DC circuits by applying Ohm's Law for different resistor values and voltage sources. Measure current and voltage in DC circuits to verify Kirchhoff's Law. Verify laws of series and parallel circuits with voltage source in different combinations. Measure current and voltage and analyze the effects of shorts and opens in series and parallel circuits. Measure power, energy for lagging and leading power factors in single phase circuits. Determine the relationship between Line and Phase values for star and delta connections. Measure the Power of three phase circuit for balanced and unbalanced loads.
4.	Assemble Electrical accessories and test charging and discharging of batteries. (NOS: PSS/N6002)	Perform Battery Charging by different methods and test charging. Check discharged and fully charged battery and prepare report. Perform routine care, maintenance of Batteries, filling of electrolytes.
5.	Assemble, install and test Wiring and Earthing system, check faults and carry out repairing of circuit breakers. (NOS: PSS/N7001, PSS/N6001, PSS/N6002)	Perform installation of earthing system and testing of earthing system. Perform utility of an earth leakage relay.
6.	Plan, execute commissioning, testing of AC & DC motors and carry out maintenance of transformer. (NOS: ELE/4402,	Explain the difference between AC and DC Motors. Identify types of transformers. Demonstrate use of C.T. & P.T. Conduct No-load and short circuit tests. Test single phase and three phase transformers. Demonstrate changing of oil in transformer.

	PSS/N2407, PSS/N1709)	Test for faults in transformer.
7.	Plan, connect, test,	Demonstrate Power factor correction of Industrial load.
	evaluate performance	Explain the effect of changing the field excitation.
	and carry out	Perform connection of D.O.L Starter.
	maintenance of	Perform connection of Star /Delta starter.
	synchronous motors,	Perform connection of autotransformer starter.
	induction motors and	Make connections of single-phase motor, testing, running, and
	alternator. (NOS:	reversing.
	PSS/N9405)	Demonstrate voltage Building, load characters & regulation on
		alternators.
		Perform installation, running and maintenance of Alternators.
8.	Erect overhead	Explain the behaviour of R, $X_L \& X_C$ in A.C. circuits both in series and
	distribution line and	in parallel.
	outline various power	Demonstrate use of single phase preventer.
	plant layout. (NOS:	Demonstrate use of phase sequence meter.
	PSS/N0106)	Explain erection of overhead distribution lines.
9.	Measure electrical	Perform tests on Multimeter, Wattmeter, P F meter, Energy meter,
	parameters by using	Frequency mete, functional check of measuring instruments.
	analog/ digital measuring	Demonstrate operation of C.R.O.
	instruments.	Demonstrate maximum demand meter.
	(NOS: PSS/N1707)	Demonstrate use of phase sequence indicator and digital Instruments.
10	. Perform installation and	Demonstrate connection of gear generating.
	check functionality of	Explain the working principle of gear box in WT
	gear box, brakes,	Functions of gear measurement and testing.
	dynamometers, clutches	Functions of Brakes, Dynamometers, Clutches & Bearings.
	& bearings, couplings	Identifying the materials used in brake components.
	and maintain lubrication	Identifying the structure and function of various brake systems.
	system.	Identifying the areas of use for brake systems.
	(NOS: CSC/N0901)	Explain how brake systems are monitored using sensors.
		Recognize the dangers of working on brake systems.
		Demonstrate Installation and removal of brake system.
		Demonstrate installation and removal of brake system.

	Explain commissioning of couplings.
	Identifying the damages of couplings.
	Explain functions and working principle of lubrication.
	Identification of characteristics and functions of oils and greases.
11.Apply the basic	Functions and working principle of hydraulics and types of flow.
parameters of hydraulics.	Identification of parameters associated with fluid flow and
(NOS: ELE/N9432)	hydrostatic pressure.
	Explain physical principles of hydraulics.
	,
12. Select the appropriate	Test diodes and study characteristics of diodes using multi-meter.
electronic components	Perform working of bridge wave rectifier circuit.
and check their	Test and demonstrate characteristics of transistors.
performance.	Assemble and test a single stage amplifier and check on C.R.O.
(NOS: ELE/N5804)	Test power amplifier.
	Draw Power control circuits using S.C.R. & Diac, Triac, I.G.B.T.
	Basic structure of programmable logic controller (PLC).
	Basic structure of embedded system.
	Basic functions of SCADA features.
13. Construct and test	
13. Construct and test circuits and	8051 Microcontroller, architecture, pin details & the bus system.
circuits and	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers.
circuits and communication	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers.
circuits and communication components using	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine
circuits and communication components using microcontroller 8051.	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's.
circuits and communication components using microcontroller 8051.	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages.
circuits and communication components using microcontroller 8051.	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages.
circuits and communication components using microcontroller 8051. (NOS: ELE/N9443)	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages. Working with UPS.
circuits and communication components using microcontroller 8051. (NOS: ELE/N9443)	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages. Working with UPS. Renewable & Non-renewable energy sources and applications. Working of wind energy plant.
circuits and communication components using microcontroller 8051. (NOS: ELE/N9443) 14. Prepare a report on renewable and Non-	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages. Working with UPS. Renewable & Non-renewable energy sources and applications.
circuits and communication components using microcontroller 8051. (NOS: ELE/N9443) 14. Prepare a report on renewable and Non- renewable energy	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages. Working with UPS. Renewable & Non-renewable energy sources and applications. Working of wind energy plant. Advantages and growth of wind energy applications. Evaluate Major components of horizontal & vertical axis WT.
circuits and communication components using microcontroller 8051. (NOS: ELE/N9443) 14. Prepare a report on renewable and Non- renewable energy technology and test a	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages. Working with UPS. Renewable & Non-renewable energy sources and applications. Working of wind energy plant. Advantages and growth of wind energy applications.
circuits and communication components using microcontroller 8051. (NOS: ELE/N9443) 14. Prepare a report on renewable and Non- renewable energy technology and test a model wind turbine	8051 Microcontroller, architecture, pin details & the bus system. Construct and test control circuits using Protection devices, Sensors and Transducers. Construct circuits with popular ICs used in controlling wind turbine equipment's. Test servo stabilizer and measure input and output voltages. Working with UPS. Renewable & Non-renewable energy sources and applications. Working of wind energy plant. Advantages and growth of wind energy applications. Evaluate Major components of horizontal & vertical axis WT.

15. Read and apply	Read & interpret the information on drawings and apply in executing
engineering drawing for	practical work.
different application in	Read & analyze the specification to ascertain the material
the field of work.	requirement, tools and assembly/maintenance parameters.
(NOS: PSS/N9401)	Encounter drawings with missing/unspecified key information and
	make own calculations to fill in missing dimension/parameters to
	carry out the work.
16. Demonstrate basic	Solve different mathematical problems
mathematical concept	
and principles to	
perform practical	
operations. Understand	Explain concept of basic science related to the field of study
and explain basic	
science in the field of	
study.	
(NOS: PSS/N9402)	
	SECOND YEAR
17. Assemble parts of	Demonstration on wind turbine models.
generator and gears	Assemble parts of wind turbine blades and demonstrate its working.
used in Wind Turbine	Assemble Generator, Gears and rings to the turbine blades and
and test the	verify the function.
performance.	Effect of Diade analysis at the newformance of wind tombine
(NOS: SGJ/N9405)	Effect of Blade angles on the performance of wind turbine.
18. Operate, troubleshoot	Oil hydraulics, Hydraulic drive train, Hydraulic system used in blade
and control the	mechanism, Hydraulic pitch control, Hydraulic battery, hydraulic
Hydraulic equipment	switches and Electro-hydraulic component.
used in Wind Energy	Functions of hydraulic energy transmission and hydraulic circuit
Sector.	arrangements
(NOS: SGJ/N9406)	Describe external gear pumps and hydraulic cylinders.
	Assemble simple basic hydraulic circuits.
	Assemble, dismantle and perform maintenance of control blocks
	variable displacement pumps and pressure storage units.
	Interpret complex hydraulic diagrams for wind turbines.
	Describe the structure and function of variable displacement pumps
	with control devices.
	1

Describe the structure and function of hydrostatic gears for wind turbines.
Explain the structure and function of hydraulic storage units.
Name opportunities for energy saving based on the choice of
components and circuit types.
Explain connecting systems for valves and control blocks.
Wind turbine blades and moulds with available materials.
Characteristics of design features of rotors and rotor blades.
Factors affecting on performance of rotor.
Importance of good blade condition.
Aerodynamics of a wind turbine.
Procedures for working on and in rotor blades.
Construction of rotor blades and the materials used.
Blade access techniques.
Types of damages to rotor blades.
Identify the tools and devices needed for the inspection of rotor
blades.
Possible hazards encountered in working on rotor blades.
Techniques of rotor assembling.
Benefits pitch actuator.
Analyzing the fault of pitch sensor.
Performance evaluation of horizontal axis wind turbine and record observation.
Performance evaluation of vertical axis wind turbine and record
observation.
observation. Grid connected WEG system – Fixed speed, variable speed and
Grid connected WEG system – Fixed speed, variable speed and
Grid connected WEG system — Fixed speed, variable speed and doubly fed system and record observation.
Grid connected WEG system — Fixed speed, variable speed and doubly fed system and record observation. Synchronization of wind electric generators and record observation.
Grid connected WEG system – Fixed speed, variable speed and doubly fed system and record observation. Synchronization of wind electric generators and record observation. Noise level of wind turbine system and record observation.
Grid connected WEG system — Fixed speed, variable speed and doubly fed system and record observation. Synchronization of wind electric generators and record observation. Noise level of wind turbine system and record observation. Working principles of different components of power collection
Grid connected WEG system — Fixed speed, variable speed and doubly fed system and record observation. Synchronization of wind electric generators and record observation. Noise level of wind turbine system and record observation. Working principles of different components of power collection
Grid connected WEG system – Fixed speed, variable speed and doubly fed system and record observation. Synchronization of wind electric generators and record observation. Noise level of wind turbine system and record observation. Working principles of different components of power collection network.

Motor.	How a commutator motor works.				
(NOS: PSS/N9405)	Maintenance and test procedures for electrical machines in wind				
	turbines.				
	Protection devices for three-phase machines.				
	Design, functions and controls of various inverter systems.				
22. Check the availability of	Wind resource assessment techniques.				
wind in a place &	Estimate and evaluate wind resource for prospective site.				
prepare a feasibility	Identifying the site and its characteristics.				
report on site suitability	Feasibility of a site/project.				
for a project.	Identification of good wind resource potential site.				
(NOS: SGJ/N9404)					
23. Measure Wind energy	Identifying various sensors used in wind turbines.				
by using Sensors and	Identifying possible causes of faults in sensors.				
install, operate and	Install and adjust sensors in accordance with manufacturer data.				
maintain Wind Sensor	Installation and erection of Met- Mast.				
Instrument.	Assemble techniques of sensors in order.				
(NOS: SGJ/N9401)	Testing and trouble-shooting on wind turbine sensors.				
	Visual inspection and maintenance of lightning protection systems.				
	Identify and replace damaged components of sensor instruments.				
	Test the assembled sensors and verify results.				
	Test the data logger and verify the measurements.				
24. Perform Collection,	Demonstrate data collection techniques.				
Processing, Validation,	Raw data measuring techniques.				
Analysis and Reporting	Wind speed calculation and wind rose diagram.				
of Wind Data.	Analyze sources of error and possibilities.				
(NOS: SGJ/N9409)	Verify basic measuring parameters.				
25. Demonstrate operating	Demonstrate operation of cranes.				
of Cranes, different	Demonstrate Signals for crane operators.				
slings and lift jigs	Test properties of oils and lubricants.				
following the Signals for					
crane operators.					
(NOS: ISC/N9439)					

26.	Perform installation,	Perform foundation for wind turbine tower.
	commissioning,	Perform tower assembly.
	operation and	Brief of Balance of Plant (BoP) for wind project.
	maintenance of wind	Demonstrate operation of wind turbine generator.
	turbine in a working	Preventive maintenance of wind turbine generator.
	wind farm.	Carry out inspections of WTG, blade and associated mechanical
	(NOS: SGJ/N9411)	components.
27.	Perform repair and	Tools to carry out online testing of WTG and components.
	replacement activities of	Measure and record performance parameters like voltage, current,
	electrical control parts	frequency parameters, WTG temperature, etc.
	and mechanical	Measure and record for performance parameters of transformer like
	components of Wind	input voltage/ output voltage, frequency, phase sequence, etc.
	Turbine Generator.	Identify the operation manuals of all mechanical components for
	(NOS: SGJ/N9410)	inspection.
		Measure and record real time parameters of WTG and associated
		components like vibration, torqueing, temperature of bearings,
		grease level, alignment etc.
		Measure and record real time parameters of wind turbine blades
		and associated components like temperature, vibration, alignment,
		etc.
		Carry out maintenance activities for mechanical components of WTG
		as per standard operating procedures.
		Measure and record parameters post maintenance activities.
		Carry out repair or replacement of faulty mechanical components
		and equipment's of WTG.
28.	Evaluate the Challenges	Rules on permitting process involves road bonding.
	for transportation and	Wind component dimensions and weight lack uniformity.
	setting-up of Wind	Factors Influencing Route Choice and Transportation Costs.
	turbine components at	Concept of Transportation Breakpoints.
	heights and under	Select the appropriate PPE (Personal Protective Equipment) to carry
	hazardous conditions.	out the specific activity.
	(NOS: SGJ/N9411)	Assess weather and environmental conditions for working at heights.
		Hazards, risks and basic rescue techniques at heights.
		Correct use of PPE, such as safety harnesses, lanyards, fall arresters
		and work positioning equipment.
		1

29.	Adhere to	Select and use of standard items of personal protective equipment.
	Environmental and	Assess risk situations in general work activities.
	Safety guidelines	Take general accident prevention measures.
	followed in wind power	Identify the location of the conduit, cables, pipes & other undergoing
	plant. (NOS:	devices prior to performing maintenance work.
	SGJ/N9411)	Perform visual inspection of the electrical and mechanical systems of
		wind power plant and record any defects.
		Identify and follow warning signs on site.
		Ensure safe working practices when working at heights, confined
		areas and trenches.
		Identify methods of accident prevention in the work environment.
		Use of various appropriate fire extinguishers on different types of
		fires correctly.
		Administer appropriate first aid to victims as required.
		Emergency procedures: raising alarm, safe/efficient, evacuation,
		correct means of escape, correct assembly point, roll call, correct
		return to work.
30.	Read and apply	Read & interpret the information on drawings and apply in executing
	engineering drawing	practical work.
	for different	Read &analyze the specification to ascertain the material
	application in the field	requirement, tools and assembly/maintenance parameters.
	of work.	Encounter drawings with missing/unspecified key information and
	(NOS: PSS/N9401)	make own calculations to fill in missing dimension/parameters to
		carry out the work.
31.	Demonstrate basic	Solve different mathematical problems
	mathematical concept	Explain concept of basic science related to the field of study
	and principles to	
	perform practical	
	operations. Understand	
	and explain basic	
	science in the field of	
	study.	
	(NOS: PSS/N9402)	

SYLLABUS FOR WIND PLANT TECHNICIAN TRADE **FIRST YEAR Professional Skills Professional Knowledge Reference Learning Duration** outcome (Trade Practical) (Trade Theory) Various safety measures involved Professional Plan and organize the 1. Perform various safety work to make job as Skills measures in the shop floor in the Industry. Elementary first per specification 60 Hrs with first aid tools. Aid. Concept of Standard applying different 2. Visit different sections of types of basic fitting Professional the Institute. Identification of Trade-Hand Toolsoperations and check **Specifications** Knowledge 3. Demonstrate on elementary for dimensional 12 hrs first aid and artificial accuracy following safety precautions. Respiration. [Basic fitting 4. Demonstrate using Trade operations - Marking, hand tools. Hack-sawing, 5. Identify simple types of Chiselling, Filing, screws, nuts & bolts, Drilling, Threading etc. chassis, clamps, rivets etc. Accuracy: ± 0.25 mm] 6. Practice use, care & maintenance of various hand tools. 7. Practice fitting jobs and **ALLIED TRADES:** Safety precautions. Introduction of fitting trade. Safety 8. Identify and practice use of precautions to be observed fitter tools and accessories. Description of files, hammers, 9. Practice on marking tools chisels, hacksaw frames & bladesusage, use of chisels. their specification & grades. Care & 10. Practice hacksaw on flats. maintenance of steel rule try 11. Practice sheet metal filing. square and files. 12. Practice filing true to line. 13. Practice use of firmer Marking tools description & use. chisel and preparing simple Description of carpenter's common hand tools such as saws planes, half lap joint. 14. Demonstrate Sawing and chisels mallet claw hammer,

			planning and use	marking, dividing & holding tools-
			carpenter's common hand	their care and maintenance.
			tools.	their care and maintenance.
		15.	Demonstrate and use	Types of drills description & drilling
			types of drills, power	machines, proper use, care and
			drilling machines, care and	maintenance.
			maintenance.	
		16.	Practice grinding of drill	Description of taps &dies, types in
			bits.	rivets & riveted joints. Use of
		17.	Practice on use of taps	thread gauge.
			&dies, threading hexagonal	
			& square nuts etc. to cut	Description of marking &cutting
			external threads on stud	tools such as snubs shears punches
			and on pipes.	& other tools like hammers,
		18.	Practice on use of snips,	mallets etc. used by sheet metal
			marking & cutting of	workers. Types of soldering irons-
			straight & curved pieces in	their proper uses.
			sheet metals.	
		19.	Practice bending the edges	Use of different bench tools used
			of sheets metals.	by sheet metal worker. Soldering materials, fluxes and process.
		20.	Practice riveting practice in	materials, maxes and process.
			sheet metal.	
		21.	Practice in making	
			different joints in sheet	
			metal and soldering the	
Drofossissal	Darform inining of	22	joints.	Fundamental of alastwicks
Professional	Perform joining of	22.	Practice using cutting	Fundamental of electricity.
Skills 60 Hrs	electrical wires as per	22	pliers, screw drivers etc.	Electron theory- free electron.
OU HIS	specification applying	25.	Practice skinning the cables, and single strand	Fundamental terms, definitions, units & effects of electric current.
Professional	different types of operations like		joint.	diffus & effects of electric current.
Knowledge	soldering, crimping and	2/1	Demonstrate& Practice	Solders, flux and soldering
12 hrs	measuring of insulation	24.	bare conductors joints—	technique. Resistors - types of
12 1113	resistance.		such as Britannia, straight,	resistors & properties of resistors.
	i coloculioc.		Tee, Western union Joints.	resistors & properties of resistors.
		25	Practice soldering of	Explanation, Definition and
			different components.	properties of conductors,
		26.	Measure Resistance and	insulators and semi-conductors.
		0.		

		specific Resistance.	
		27. Demonstrate and identify	Voltage grading of different types
		types of cables.	of Insulators, Temp. Rise
		28. Demonstrate & practice	permissible Types of wires & cables
		use of standard wire	standard wire gauge Specification
		gauge.	of wires &Cables insulation &
		29. Practice use of crimping	voltage grades –Low, medium &
		thimbles, Lugs.	high voltage Precautions in using
		30. Examine and check cables	various types of cables.
		and conductors.	various types or casies.
		31. Verify materials according	
		to the span.	
Professional	Construct and verify	32. Measure resistance by	Resistance Different Types of
Skills	characteristics of	voltage drop method.	resistance bilicient Types of
60 Hrs	electrical and magnetic	33. Verify Series & shunt	Specification of resistance and
001113	circuits.	circuits.	tolerance. Effect of variation of
Professional	circuits.	34. Use of Multi-meter in	temperature on resistance.
		circuits.	Measurement of resistance by
Knowledge 12 hrs			different methods
12 1115		35. Verify Ohm's Law.	
		36. Verify series and parallel	a) Using Wheatstone Bridge
		circuits.	b) By voltage drop method.
		37. Practice assembly /	Ohm's Law – Simple electrical
		winding of a simple electro	circuits and problems. Resistors –Law of Resistance.
		magnet.	
		38. Identify different types of	Series and parallel circuits.
		Capacitors.	Kirchoff's Laws & applications
		39. Practice charging &	Magnetism – classification of
		discharging of capacitor.	magnets, methods of magnetizing,
		40. Test Capacitors using DC	magnetic materials. Properties,
		voltage and lamp.	care & maintenance, methods of
			magnetizing magnetic materials.
			Para & Diamagnetism and Ferro
			magnetic materials. Principle of
			electro-magnetism, Maxwell's
			corkscrew rule, Fleming's left- &
			right-hand rules, Magnetic field of
			current carrying conductors, loop
			& solenoid.

				MMF, Flux density, reluctance.
				B.H. curve, Hysteresis, Eddy
				current. Principle of
				electromagnetic Induction,
				Faraday's Law, Lenz's Law.
				Electrostatics – Capacitor Different
				types, functions & uses.
Professional	Assemble Electrical	11	Fix switches, holder plugs	Common Electrical Accessories,
Skills	accessories and test	41.	etc. in T.W. boards.	their specifications. Explanation of
60 Hrs		42		switches lamp holders, plugs and
00 HIS	charging and	42.	Identify and practice use of	
Duefeesienel	discharging of	42	wiring accessories.	sockets.
Professional	batteries.	43.	Practice Battery Charging	Developments of domestic circuits,
Knowledge			and discharging by	Alarm & switches, lamp, fan with
12 hrs			different methods and test	individual switches, Two-way
			charging.	switch.
		44.	Test cells, check discharged	
			and fully charged battery.	Chemical effect of electric current-
		45.	Practice installation of	Principle of electrolysis. Faraday's
			batteries.	Law of electrolysis. Basic principles
		46.	Practice routine care,	of Electro-plating and Electro
			maintenance of Batteries,	chemical equivalents. Explanation
			filling of electrolytes.	of Anodes and cathodes. Lead acid
				cell-description, methods of
				charging-Precautions to be taken.
Professional	Assemble, install and	47.	Practice in casing, Capping.	Electric wirings, importance, I.E
Skills	test Wiring and		Conduit wiring with	rules. Types of wirings both
55 Hrs	Earthing system, check		minimum to a greater	domestic & industrial –
	faults and carry out		number of points.	Specifications for wiring – Grading
Professional	repairing of circuit	48.	Practice use of two-way	of cables and current ratings.
Knowledge	breakers.		switches.	Principle of laying out in domestic
10 hrs		49.	Test insulation by two	wiring-testing by megger
			lamp method & megger.	
		50.	Identify & demonstrate	Wiring system – Using casing
			conduits and accessories &	capping, P.V.C., concealed system.
			their uses. Practice cutting,	-Maintenance & Repairing data
			threading & laying.	sheet preparation. Specifications,
		51.	Practice installation of	standards for conduits &
			earthing system and	accessories
		1	<u> </u>	

			testing.	Earthing – Principle of different
		52.	Practice utility of an Earth	methods of earthing. Importance
			Leakage Relay.	of Earthing. –Earth Leakage Relay.
Professional	Plan, execute	53.	Identify types of	Introduction of AC and DC Motors
Skills	commissioning, testing		transformers.	Demonstrate the difference
45 Hrs	of AC & DC motors and	54.	Practice connection of	between AC and DC Motors
	carry out maintenance		transformers and study	TRANSFORMERS Working principle
Professional	of transformer.		their efficiencies.	of Transformer, classification
Knowledge		55.	Test transformer and	instrument transformer - C.T., P.T.
08 hrs			conduct No-load and short	Instrument and Auto
			circuit tests.	Transformer/Variac Construction
		56.	Demonstrate use of	of Single phase and Poly phase
			Instrument transformer	transformers. E.M.F. equation,
			(C.T. & P.T).	parallel operation of transformer,
		57.	Test single phase and	their connections. Regulation and
			Three Phase Transformers.	efficiency, Cooling of transformer,
		58.	Demonstrate Cleaning and	protective devices. Specifications,
			maintenance of	simple problems on e.m.f.
			Transformers.	Equation, turn ratio, regulations
		59.	Demonstrate Changing of	and efficiency. Special
			oil in transformer.	transformers. Transformer –
		60.	Test for faults in	construction core type, shell type,
			transformer.	winding shielding, auxiliary parts
				breather, conservator Buchholz
				Relay, other protective devices,
				cooling of transformer,
				Transformer oil testing and Tap
				changing off load and on load.
				Transformer bushings and
				termination.
Professional	Plan, connect, test,	61.	Practice on starting,	SYNCHRONOUS MOTOR – Working
Skills	evaluate performance		running, connection to bus	principle, effect of change of
80 Hrs	and carry out		bar.	excitation and load. Application in
	maintenance of	62.	Study effect of changing	industry in power factor
Professional	synchronous motors,		the field excitation.	improvement.
Knowledge	induction motors and	63.	Demonstrate Power factor	
20 hrs	alternator.		correction of Industrial	Converter-inverter, M.G. Set

			load.	description-Characteristics,
		64.	Practice on connection of	specifications-running and
			D.O.L Starter.	maintenance.
		65.	Practice on connection of	
			Star /Delta starter.	Induction motor – Working
		66.	Practice on connection of	principle, Squirrel Cage Induction
			Autotransformer starter.	motor, Slip-ring induction motor
		67.	Practice on starting,	Construction and characteristics,
			running & speed control.	starting and speed control.
		68.	Practice connection of	
			single-phase motor,	D.O.L Starter, Star/Delta starter,
			identification, testing,	Autotransformer starter.
			running, and reversing.	
		69.	Demonstrate voltage	Single phase induction motor
			Building, load	Working principle, different
			characteristics &	method of starting and running
			regulation on alternators.	(capacitor start/capacitor run,
		70.	Practice installation,	shaded pole technique). FHP
			running and maintenance	motors.
			of Alternators.	ALTERNATOR – Explanation of
				alternator, prime mover, types,
				regulations, phase sequence,
				specification of alternators and
				brushless alternator. Automatic
				Voltage Regulator.
Professional	Erect overhead	71.	Study of the behaviour of	Alternating Current – Comparison
Skills	distribution line and		R, $X_L \& X_C$ in A.C. circuits	D.C & A.C., Advantages of A.C.
45 Hrs	outline various power		both in series and in	Alternating current & related terms
	plant layout.		parallel.	frequency, Instantaneous value,
Professional		72.	Practice on use of single-	R.M.S. value, Average value, Peak
Knowledge			phase preventer.	factor, form factor. Generation of
08 hrs		73.	Practice use of phase	sine wave, phase and phase
			sequence meter.	difference. Inductive & Capacitive
		74.	Practice erection of	reactance $X_L \& X_c$, Impedance (Z),
			overhead distribution lines.	power factor; Vector diagram.
				Active and Reactive power, Simple
				problems on A.C. circuits, single
				phase & three phase system etc.

Professional Skills 45Hrs Professional Knowledge 12 hrs	Measure electrical parameters by using analog/ digital measuring instruments.	 75. Perform tests on Multimeter, Wattmeter, P F meter, Energy meter, Frequency meter, Functional Check of measuring instruments. 76. Practice operation of C.R.O. 77. Demonstrate Maximum Demand meter. 78. Practice use of Phase sequence indicator. 79. Practice use of Digital 	Problems on A.C. circuits. Both series & parallel power consumption P.F. etc. Concept three-phase Star & Delta connection Line voltage & phase voltage, current & power in a 3 phase circuit, with balanced and unbalanced load. Layout of power plant, sub-stations and wind farms. Electrical measuring Instruments — Types, Deflecting torque, Controlling torque & Damping torque, -Moving coil permanent magnet —Moving iron —Range extension —Multimeter — Wattmeter — P.F. meter — Intergrading type, Digital Energy meter — megger. —Energy meter — Frequency meter — Tri vector meter —Max Demand meter —Phase Sequence indicator —Multimeter — Analog and Digital — C.R.O
Professional Skills 90 Hrs Professional Knowledge 20 hrs	Perform installation and check functionality of gear box, brakes, dynamometers, clutches & bearings, couplings and maintain lubrication system.	80. Practice on connection of gear generating. 81. Understanding the working principle of Gear box in WT. 82. Functions of Gear Measurement and Testing. 83. Identifying the materials used in brake components.	Gear Making: Manufacture of gears – by Casting, Moulding, Stamping, Coining Extruding, Rolling, Machining; Gear generating methods: Gear Shaping with pinion cutter & rack cutter; Gear hobbing; Description of gear hob; Operation of gear hobbing machine; Gear finishing processes;
		84. Identifying the structure and function of various brake systems.85. Identifying the areas of use	Gear materials and specification; Heat treatment processes applied to gears. Gear Measurement and Testing

- for brake systems.
- 86. Practice on how brake systems are monitored using sensors.
- 87. Recognize the dangers of working on brake systems.
- 88. Practice on Install and remove brake system.
- 89. Identify and rectify damage to Couplings.
- Identification of characteristics and functions of oils and greases.
- 91. Perform selecting, maintaining and replacing filters.
- 92. Perform working on oil change.
- 93. Perform choosing of fuel and lubricants suitable for economical industrial processing to obtain ecofriendly finished products.
- 94. Identification of risks in working with oils and greases.

aspects: Analytical and functional inspection; Rolling test; Measurement of tooth thickness (constant chord method); Gear tooth Vernier; Errors in gears such as backlash, runout, composite. Brakes, Dynamometers, Clutches & Bearings: Function of brakes and dynamometers; Types of brakes and Dynamometers; Comparison between brakes and dynamometers; Construction and working of i) shoe brake, ii) Band Brake, iii) Internal expanding shoe brake iv) Disc Brake; Concept of Self Locking & Self energizing brakes; Numerical problems to find braking force and braking torque for shoe & band brakes; Construction and working of i) Rope Brake Dynamometer, ii) Hydraulic Dynamometer, iii) Eddy current Dynamometers; Clutches-Uniform pressure and Uniform Wear theories; Function of Clutch and its application; Construction and working of i) Single plate clutch, ii) Multiplate clutch, iii) Centrifugal Clutch iv) Cone clutch and v) Diaphragm clutch. (Simple numerical on single and Multiplate clutch); Bearings – i) Simple Pivot, ii) Collar Bearing, iii) Conical pivot. Torque & power lost in friction (no derivation). Simple numericals. **Design of Couplings** – Muff Coupling, Protected type Flange

Coupling, Bush-pin type flexible

			coupling; Spur gear design considerations; Lewis equation for static beam strength of spur gear teeth; Power transmission capacity of spur gears in bending. Demonstrate the Commission of Couplings.
			Couplings: Couplings, necessity of coupling, classification of couplings. Uses and proportion of different types of couplings, Materials used for couplings. Lubrication – function and characteristic properties of good lubricant, classification with
			examples, lubrication mechanism – hydrodynamic and boundary lubrication, physical properties (viscosity and viscosity index, oiliness, flash and fire point, could and pour point only) and chemical properties (coke number, total acid number saponification value) of lubricants. Explain the importance of cutting fluids & lubricants in machining.
Professional Skills 45 Hrs Professional Knowledge 08 hrs	Apply the basic parameters of hydraulics.	Video demonstration of safety procedures in hydraulic systems. Identification of parameters associated with fluid flow and hydrostatic pressure.	Study on physical principles of hydraulics. Technical terms used in Hydraulics – fluid, fluid mechanics, hydraulics, hydrostatics and hydrodynamics - ideal and real fluid, application of hydraulics. Types of flow – Gravity and pressure flow, Laminar, Turbulent, Uniform, Non-uniform, Steady, Unsteady flow. Reynolds number.

Professional	Select the appropriate	97.	Identification of	Introduction to Basic electronics
Skills	electronic components		semiconductor devices:	Semiconductor energy level atomic
70 Hrs	and check their		Diodes – symbol.	structure. 'P' & 'N' type of
	performance.	98.	Test Diodes and Study	materials – P-N-junction. Diode-
Professional			Characteristics of Diodes	classification of Diodes – Revered
Knowledge			using multi-meter.	Bias and Forward Bias, Heat sink.
12 hrs		99.	Perform working on Half	Specification of Diode – PIV rating
			wave rectifier circuit.	Explanation and importance of D.C.
		100.	Perform working of Full	Rectifier circuit. Half wave, Full
			wave rectifier circuit.	wave and Bridge circuit. L.E.D. and
		101.	Perform working of Bridge	Solar cells. Filter circuits-passive
			rectifier circuit.	filter. Working principle and uses
		102.	Study functions of Filter	of an oscilloscope.
			circuits.	
		103.	Demonstrate operations	Types of transistors Characteristics
			of Oscilloscope.	of a transistors Biasing of
		104.	Identify transistors and	transistors. Mode of use of
			study their construction	transistor. Specification and rating
			and terminals.	of transistors
		105.	Test Transistors.	Explanation of transistor
		106.	Study the characteristics	Amplifiers , Amplifiers. – class A, B
			of transistors.	& C Power amplifier.
		107.	Test Cascade Amplifier.	Explanation of oscillator-working
		108.	Test power amplifier.	principle Explanation of stages and
		109.	Study simple circuits using	types. Multivibrator – applications.
			U.J.T. for triggering.	Explanation. And working principle
		110.	Study an amplifier using	and practical applications of U.J.T.,
			FET.	F.E.T., S.C.R. Diac, Triac, power
		111.	Study Power control	MOSFET, G.T.O & I.G.B.T.
			circuits using S.C.R. &	
			Diac, Triac, I.G.B.T.	Computer Hardware, OS, MS office
		112.	Practice on Computer	Networking and Different
			Hardware, OS, MS office	Hardware.
			Networking and Different	
			Hardware.	
		113.	PLC Operating Cycle -	
			Basic Programming	

			Instructions.	
		114.	Embedded Systems – I/O	
			Programming – Assembly	
			Language.	
Professional	Construct and test	115.	Practice 8051	Microprocessor based control
Skills	circuits and		Microcontroller,	system; Robot path control: Point
65 hrs	communication		architecture, pin details &	to point, Continuous path control
	components using microcontroller 8051.		the bus system.	and Sensor based path control;
Professional	microcontroller 6051.	116.	Construct and test control	Controller programming.
Knowledge			circuits using Protection	
12 hrs			devices, Sensors and	Brief on 8051 Microcontroller ,
			Transducers.	architecture, pin details & the bus
		117.	Construct circuits with	system Protection devices, Sensors,
			popular ICs used in	Transducers and Applications.
			controlling wind turbine	
			equipment's.	Concept and block diagram of
		118.	Test servo stabilizer and	manual, automatic and servo
			measure input and output	voltage stabilizer, o/p voltage
			voltages.	adjustment, voltage cut-off
		119.	Practice working with	systems, study of different types of
			UPS.	relays used in stabilizer.
				Concept of UPS, Difference
				between Inverters and UPS.
Professional	Prepare a report on	120	Dronaro ronarto an	Introduction about Energy Non
Skills	renewable and Non-	120.	Prepare reports on advantages and growth of	Introduction about Energy – Non- renewable energy (thermal and
60 hrs	renewable energy		wind energy applications.	nuclear) with applications
00 1113	technology and test a	121	Test major components of	Tracically with applications
Professional	model wind turbine	121.	horizontal axis WT.	Renewable Energy Technology
Knowledge	component and record	122.	Test major components of	(Wind, Solar, Ocean, Hydro,
12 hrs	the observations.		vertical axis WT.	Biomass, waste to energy) with
		123.	Test small wind turbine	Applications
			components.	
			•	Introduction of Wind Energy -
				wind energy applications,
				advantages and its development,
				wind energy production and its
		I		status, wind energy potential and

installation in India and wind and renewable energy scenario Explain the Non-renewable energy sources and applications.

Explain the renewable energy sources and applications.
Explain wind energy plant working.
Atmospheric circulations, classification, factors influencing wind, wind shear, turbulence, wind speed monitoring, Wind resource assessment, Weibull distribution; Betz limit, Wind energy conversion systems: classification, applications, power, torque and speed characteristics

Aerodynamic design principles;
Aerodynamic theories: Axial
momentum, Blade element and
combine theory, Rotor and
Generator characteristics,
Maximum power coefficient, Tip
loss correction, Wind turbine
design considerations:
methodology, theoretical
simulation of wind turbine
characteristics.

ENGINEERING DRAWING: 40 Hrs.

Professional Knowledge ED- 40 Hrs.

Read and apply engineering drawing for different application in the field of work.

Introduction to Engineering Drawing and Drawing Instruments-

- Conventions
- Sizes and layout of drawing sheets
- Title Block, its position and content
- Drawing Instrument

Free hand drawing of -

- Geometrical figures and blocks with dimension
- Transferring measurement from the given object to the free hand sketches.
- Free hand drawing of hand tools.

		Drawing of Geometrical figures: • Angle, Triangle, Circle, Rectangle, Square, Parallelogram. • Lettering & Numbering – Single Stroke Dimensioning Practice • Types of arrowhead Symbolic representation • Different electrical symbols used in the related trades Reading of Electrical Circuit Diagram Reading of Electrical Layout drawing
	WORKS	HOP CALCULATION & SCIENCE: 30 Hrs.
Professional Knowledge WCS- 30 Hrs.	Demonstrate basic mathematical concept and principles to perform practical operations. Understand and explain basic science in the field of study.	Unit, Fractions Classification of unit system Fundamental and Derived units F.P.S, C.G.S, M.K.S and SI units Measurement units and conversion Factors, HCF, LCM and problems Fractions - Addition, substraction, multiplication & division Decimal fractions - Addition, subtraction, multiplication & division Solving problems by using calculator Square root, Ratio and Proportions, Percentage Square and square root Simple problems using calculator Applications of Pythagoras theorem and related problems Ratio and proportion Ratio and proportion - Direct and indirect proportions Percentage Percentage - Changing percentage to decimal and fraction Material Science Types metals, types of ferrous and non-ferrous metals Introduction of iron and cast iron Mass, Weight, Volume and Density Mass, volume, density, weight Related problems for mass, volume, density, weight Work, power, energy, HP, IHP, BHP and efficiency Potential energy, kinetic energy and related problems with assignment Heat & Temperature and Pressure Concept of heat and temperature, effects of heat, difference between heat and temperature, boiling point & melting point of different metals and non-metals Scales of temperature, Celsius, Fahrenheit, kelvin and conversion between scales of temperature Heat & Temperature - Temperature measuring instruments, types of

thermometer, pyrometer and transmission of heat - Conduction,

	convection and radiation.		
	Mensuration		
	Area and perimeter of square, rectangle and parallelogram		
	Area and perimeter of Triangles		
	Area and perimeter of circle, semi-circle, circular ring, sector of circle,		
	hexagon and ellipse		
	Surface area and volume of solids - cube, cuboid, cylinder, sphere		
	and hollow cylinder		
	Trigonometry		
	Measurement of angles		
	Trigonometrical ratios		
	Trigonometrical tables		
In-plant training/ Project work			
Examination			

SYLLABUS FOR WIND PLANT TECHNICIAN TRADE							
	SECOND YEAR						
Duration	Reference Learning Outcome	Professional Skills (Trade Practical) With Indicative Hours	Professional Knowledge (Trade Theory)				
Professional	Assemble parts of	124. Perform practice on wind	Wind Turbine Laboratory				
Skills	generator and gears	turbine models.	Wind Turbine Components - Types				
65 hrs	used in Wind Turbine	125. Study the characteristics	of Wind turbine, Characteristics				
	and test the	of wind turbine.	and performance of Wind turbine				
Professional	performance.	126. Assemble parts of wind	Components, Design aspects of				
Knowledge		turbine blades and	Wind turbine				
16 hrs		demonstrate its working.	Wind Turbine Tower - Rotor Blades				
		127. Assemble Generator,	- Nacelle - Low and High - Speed				
		Gears and rings to the	shaft				
		turbine blades and verify					
		the function.	Wind Turbine Components				
		128. Study Effect of Blade	Gearbox – Generator – Controller -				
		angles on the	Yaw Controlling Mechanism.				
		performance of wind					
		turbine.					
Professional	Operate, troubleshoot	129. Describe external gear	Study functions of hydraulic				
Skills	and control the	pumps and hydraulic	energy transmission.				
65 hrs	Hydraulic equipment	cylinders.	Study functions of basic hydraulic				
	used in Wind Energy	130. Assemble simple basic	circuit arrangements.				
Professional	Sector.	hydraulic circuits.	Oil hydraulics				
Knowledge		131. Assemble, dismantle and	Hydraulic drive train				
17 hrs		perform maintenance of	Hydraulic system used in blade				
		control blocks variable	mechanism				
		displacement pumps and	Hydraulic pitch control				
		pressure storage units.	Hydraulic battery				
		132. Interpret complex	hydraulic switches				
		hydraulic diagrams for	Electro-hydraulic components.				
		wind turbines.					
		133. Describe the structure and					
		function of variable					

			displacement pumps with	
			control devices.	
		134.	Describe the structure and	
			function of hydrostatic	
			gears for wind turbines.	
		135.	Explain the structure and	
			function of hydraulic	
			storage units.	
		136.	Name opportunities for	
			energy saving based on	
			the choice of components	
			and circuit types.	
		137.	Explain connecting	
			systems for valves and	
			control blocks.	
Professional	Demonstrate the	138.	Practice on wind turbine	Principle of Rotation – Forces on
Skills	working principle of		blades and moulds with	Rotor Blade – Aerodynamic power
65 hrs	Aerodynamics aspect		available materials (like	regulation
	of Rotor Blade.		wood, glass fibre, etc.,)	Different types of Yaw system Yaw
Professional			and make blade profile	bearing, Yaw drives, Yaw brake and
Knowledge			with length up to 1 meter.	Yaw vane (Active and Passive)
17 hrs		139.	Identifying and name the	Working principle of Pitch
			tools and devices needed	controller – Pitch Action, pitch
			for the inspection of rotor	power curve, pitch mechanism,
			blades.	features of pitch controlled.
		140.	Inspect cable loops and	Factors affecting on performance of
			twisted pair cables.	rotor.
		141.	Identify and document	Design features of rotors and rotor
			damage to yaw systems.	blades. Importance of good blade
		142.	Clear faults and perform	condition. Aerodynamics of a wind
			maintenance of yaw	turbine. Construction of rotor
			systems including	blades and the materials used.
			documentation of	Blade access techniques.
			maintenance work.	Demonstrate the types of damages
		143.	To understand the	to rotor blades. Procedures for
			Aerofoil Lift and Drag	working on and in rotor blades.
			force.	Explain the possible hazard
		144.	Study simple calculation of	encountered in working on and in

			Pitch Angle and Pitch	rotor blades.
			Coefficient.	Demonstrate the techniques of
		145.	Understanding the	rotor assembling.
			benefits Pitch Actuator.	Explain the Commission of yaw
		146.	Analyzing the Fault of	systems.
			Pitch Sensor.	
Professional	Examine various types	147.	Performance evaluation of	Wind Turbine Components
Skills	of Wind energy		horizontal axis wind	Aerodynamic Breaking System of
65 hrs	generators and		turbine.	Wind Power Turbine
	evaluate their	148.	Performance evaluation of	Discussion on the identified
Professional	performance.		vertical axis wind turbine.	projects with respect to data of the
Knowledge		149.	Performance evaluation of	concerned ICs, components used in
17 hrs			wind water pumping	the project
			system.	
		150.	Evaluate the Tip Speed	Wind Turbine Components
			Ratio (TRS) at different	Constant / Variable Speed Wind
			wind speed.	turbines, Transformers, Power
		151.	Evaluate the Wind Turbine	Electronics, Power Converters,
			Power Coefficient (cp).	Tower Foundation of Wind Turbine
		152.	Check power electronics	
			system on grid interaction.	Power collection network.
		153.	Study Standalone WEG.	
		154.	Check Grid connected	
			WEG system – Fixed	
			speed, variable speed and	
			doubly fed system.	
		155.	Synchronization of wind	
			electric generators.	
		156.	Thermo gram of wind	
			rotor system and gear box.	
		157.	Noise level of wind turbine	
			system.	
		158.	Develop tower design.	
		159.	Perform working	
			principles of Different	
			components of power	

		collection net	work.	
Professional Skills 60 hrs	Install, test, repair and maintenance of Generator and Electric	160. Examine Prince components applications i	and n electrical	Overview of the structure and function of DC, AC and three-phase machines installed in wind turbines.
Professional Knowledge 17 hrs	Motor.	power general 161. Practice on el Mechanical control circuits used	ectrical and ontrol	
		energy plant. 162. Practice on go AC and three- voltage.		
		163. Practice on he rotating field is produced.		
		164. Practice on he commutator works.		
		165. Practice on he rotating field works.		
		166. Identifying armaintenance procedures for machines in N	and test or electrical	
		167. Practice on Prodevices for the machines.	rotection	
		168. Practice on defunctions and various invert	controls of	
		169. Practice on In inverter system		
Professional Skills 60 hrs	Check the availability of wind in a place & prepare a feasibility	170. Estimate and wind resource prospective s	e for	Wind Resource AssessmentIntroduction and basics of Wind
30 1113	report on site	171. Prepare feasi	, ,	Resource Assessment

Professional Knowledge 17 hrs	suitability for a project.	of a site /project.	Techniques - Types and Nature of Wind Techniques for Estimating Wind Resource - Wind Data for Prospective Site Identifying the Site and its Characterize in the Wind Resource - Evaluation of Sites Identification of Good Wind Resource Potential Site Feasibility Study of a Site / Project.
Professional Skills 65 hrs Professional Knowledge 17 hrs	Measure Wind energy by using Sensors and install, operate and maintain Wind Sensor Instrument.	 172. Identifying and Practice on structure and function of various sensors used in wind turbines. 173. Identifying possible causes of faults in sensors. 174. Test the assembled sensors and verify results. 175. Test the data logger and verify the measurements. 	Different types of Sensors: Anemometer, wind vane, rpm sensors of main shaft and generator, temperature sensors of nacelle, gearbox and generator; cable untwisting and vibration sensors. Operation & Maintenance of Wind Sensors Instrument and its trouble- shooting • Meteorological Mast • Data Logger • Wind Vane • Anemometer • Temperature Sensor • Barometer Pressure Sensor • Relative Humidity Sensor • Measurement Duration and Data Recovery Techniques • Grounding and Lightning Protection Maintenance.
Professional Skills	Perform Collection, Processing, Validation,	176. Demonstrate data collection techniques.	How to collect Wind Data, Processing, Validation, Analysis and

60 hrs	Analysis and Reporting of Wind Data.	177.	Practice Raw Data Measuring Techniques.	Reporting
Professional Knowledge 17 hrs		179.	Practice on wind speed calculation and wind rose diagram. Analyze sources of error and possibilities. Verify basic measuring parameters.	 Detailed Data Collection Techniques Raw Data Measuring Techniques Source of Error and Possibilities Basic Measuring Parameters
Professional Skills 60 hrs Professional Knowledge 17 hrs	Demonstrate operating of Cranes, different slings lifting jigs and Signals for crane operators.	182. 183.	Demonstrate operation of Cranes. Practice on different slings and lifting jigs. Demonstrate Signals for crane operators. Test properties of Oils and Lubricants.	Principles of lifting structures, Cranes. Different types of oils and lubricants and principles of lubrication.
Professional Skills 80 hrs Professional Knowledge 28 hrs	Perform installation, commissioning, operation and maintenance of wind turbine in a working wind farm.	186. 187. 188. 189. 190.	Visit an Industry manufacturing wind turbine components. Perform Installation & Commissioning of Metmast in a wind farm. Perform foundation for wind turbine tower. Perform tower assembly. Perform assembly of Nacelle. Perform assembly of other equipment in wind turbine tower. Develop case study reports. Demonstrate operation of wind turbine generator. Demonstrate preventive	Installation and Commissioning of Wind Turbine Installation Procedure Site Identification Micro siting Foundation Tower Assembling and Selection Step by step Nacelle Assembling Assembling Equipment Details Brief of Balance of Plant (BOP) for wind project Data Collection, BoP Cost Tool Development, BoP Carbon Tool Development, Site characteristics, BoP Carbon Tool Development, Electrical Balance of Plant (EBOP)

		195.	turbine generator. Perform troubleshooting for known errors in wind turbine. Carry out scheduled & preventive inspections of electrical/mechanical components & equipment. Carry out inspections of WTG, blade and associated mechanical components.	and Mechanical Balance of Plant (MBoP) Operation and Maintenance aspects of Wind Farms Operation of Wind Turbine aspects Step by step process of Wind Turbine Maintenance Analysis of the O&M problem Component risk factors Base Case Failure Modes and Rates Quantitative analysis O&M Simulations of Wind Farm.
Professional Skills 70 hrs Professional Knowledge 16 hrs	Perform repair and replacement activities of electrical control parts and mechanical components of Wind Turbine Generator.	198. 199.	Arrange for tools to carry out online testing of WTG and components. Check all the intersections & joints (termination) in the line and cable for faults like loose joint, short circuit, open circuit etc. Measure and record performance parameters like voltage, current, frequency parameters, WTG temperature, etc. Measure and record for performance parameters of transformer like input voltage/ output voltage, frequency, phase sequence, etc.	Introduction about Electrical control parts in Wind Turbines Maintenance aspects and Objectives of: Reliability Lifetime Preventive maintenance Breakdown maintenance Manuals Spare parts Cause and effect diagrams Troubleshooting procedures Block diagrams Circuit diagrams Vendors list AMCs OEM Reconditioning

201. Maintain log of all systems condition parameters and performance parameters of switchgear measure and record all parameters of WTG and associated components like continuity, earthing resistance, etc. 202. Identify the operation manuals of all mechanical components for inspection. 203. Verify and record the operative parameters for all components as per design standard. 204. Monitor working efficiency of WTG and associated components. 205. Measure and record real time parameters of WTG and associated components like vibration, torqueing, temperature of bearings, grease level, alignment etc. 206. Measure and record real time parameters of wind turbine blades and associated components like temperature, vibration, alignment, etc. 207. Carry out maintenance activities for mechanical

components of WTG as

		per standard operating
		procedures.
		208. Carry out testing of WTG
		components on Universal
		testing machine (UTM).
		209. Compression testing
		machine (CTM).
		210. Measure and record
		parameters post
		maintenance activities.
		211. Arrange for tools and
		replacement equipment
		from the supervisor if
		required.
		212. Carry out repair or
		replacement of faulty
		mechanical components
		and equipment's of WTG,
		transformer, switchgear
		etc. as per standard
		operating procedures.
		213. Conduct readiness test on
		post replacement of
		equipment.
Professional	Evaluate the	214. Wind component Explain the rules on permitting
Skills	Challenges for	dimensions and weight process involves road bonding.
60 hrs	transportation and	lack uniformity. Barriers are related to curvature
	setting-up of Wind	215. Identify the transportation and turning radiuses, road-weight
Professional	turbine components at	difficultly by nature due to limits, street overhangs, vertical
Knowledge	heights and under	size barriers. and horizontal clearances of
16 hrs	hazardous conditions.	216. Select the appropriate PPE tunnels and bridges.
		(Personal Protective
		Equipment) to carry out Factors Influencing Route Choice
		the specific activity. and Transportation Costs
		217. Look after, store and
		maintain PPE correctly. Transportation Breakpoints
		218. Assess weather and Burden of proof shifted to the will
		environmental conditions industry.

		220.	for working at heights. Understand the hazards, risks and basic rescue techniques at heights. Practice on correct use of PPE, such as safety harnesses, lanyards, fall arresters and work positioning rope and safety helmet. Practice on Safe working at height.	Factors Influencing Route Choice and Transportation Costs. concept of Transportation Breakpoints. Introduction and understanding the Heights rescue measurements Standards on Working at Height & Rescue measurements.
Professional Skills 65 hrs	Adhere to Environmental and Safety guidelines followed in wind	222.	Practice on Select and put on standard items of personal protective equipment.	Introduction to Environment and Safety: General Principles, guidelines and acceptable limits.
Professional	power plant.	223.	Assess risk situations in	Noise and Electro Magnetic
Knowledge			general work activities.	Interference
16 hrs		224.	Take general accident	Name to a feet and a second and a second
		225	prevention measures. Identifying first aid	Mechanical safety aspects related to wind turbines.
		223.	measures in case of	to wind turbines.
			injuries and illnesses.	
		226.	Identify the location of the	
			conduit, cables, pipes &	
			other undergoing devices	
			prior to performing	
			maintenance work.	
		227.	Acquire required	
			approvals and permit to	
			work (PTW) from the	
			concerned authority.	
		228.	Select the relevant	
			protective clothing/	
			equipment for specific	
		220	tasks and work.	
		229.	Ensure that system is shut	

	down and power supply is	
	isolated prior to carrying	
	out work.	
230). Perform visual inspection	
	of the electrical and	
	mechanical systems of	
	wind power plant and	
	record any defects.	
233	 State the name and 	
	location of relevant	
	documents and people	
	responsible for health and	
	safety at the project site.	
232	2. Identify possible causes of	
	risk at project site and	
	their mitigation measures.	
233	3. Identify and follow	
	warning signs on site.	
234	 Establish safe working 	
	procedures at project site.	
235	5. Ensure safe working	
	practices when working at	
	heights, confined areas	
	and trenches.	
236	6. Identify methods of	
	accident prevention in the	
	work environment.	
237	7. Follow safe operating	
	procedures for lifting,	
	carrying and transporting	
	heavy objects & tools.	
238	3. Inspect the at project site	
	on a regular basis for any	
	signs of spillage.	
239	9. Ensure safe storage of	
	flammable materials and	
	machine lubricating oil.	

240. Apply good housekeeping

practices at all times by removal/disposal of waste products. 241. Inform relevant authorities about any abnormal situation/ behavior of any equipment/system promptly. 3Hrs) 242. Exhibit the use of various appropriate fire extinguishers on different types of fires correctly. 243. Demonstrate rescue techniques applied during fire hazard. 244. Administer appropriate first aid to victims were required e.g. in case of bleeding, burns, choking, electric shock, poisoning etc. 245. Respond promptly and appropriately to an accident situation or medical emergency in real or simulated environments. 246. Participate in emergency procedures: raising alarm, safe/efficient, evacuation, correct means of escape, correct assembly point, roll call, correct return to

247. Report the accident to the relevant authority in the

prescribed format.

work.

	ENGINEERING DRAWING: 40 Hrs.		
Professional Knowledge ED- 40 Hrs.	Read and apply engineering drawing for different application in the field of work.	Reading of Electrical Sign and Symbols. Sketches of Electrical components. Reading of Electrical wiring diagram and Layout diagram. Reading of Electrical earthing diagram. Drawing the schematic diagram of plate and pipe earthing. Drawing of Electrical circuit diagram. Drawing of Block diagram of Instruments & equipment of trades.	
	WORKS	SHOP CALCULATION & SCIENCE: 32 Hrs	
Professional Knowledge WCS- 32 Hrs.	Knowledge mathematical concept Friction - Lubrication		
	Examination		

NOTE:

- A group of 2 or 3 Students should develop a cost-effective small wind turbine gadget
- Evaluation is based on the product, report and viva voce.
- The project shall be a dissertation work individually carried out by the students under the supervision of faculty members/approved field engineers. The projects shall be carried out either in the university or in the wind industry or in R&D organizations.
- Trainees need to undergo field practice in Wind plant equipment manufacturing industries and Wind Plants. The institute should make suitable MoU with concerned Industries and plants for training the trainees' batch for 4 to 8 weeks. Only workshop equipment cannot cover all the scheduled skill sets in the syllabus under Professional Skill head.

SYLLABUS FOR CORE SKILLS

1. Employability Skills (Common for all CTS trades) (120 Hrs + 60 Hrs.)

Learning outcomes, assessment criteria, syllabus and Tool List of Core Skills subjects which is common for a group of trades, provided separately in www.bharatskills.gov.in / www.dgt.gov.in.

	List of Tools & Equipment				
	WIND PLANT TECHNICIAN (for Batch of 20 Candidates)				
SI. No.	Name of the Tools and Equipment	Specification	Quantity		
A. T	RAINEES TOOL KIT (For each additional	unit trainees tool kit Sl. 1-12 is required	additionally)		
1.	Measuring Steel Tape	5 meter	(20 +1) Nos.		
2.	Combination Plier Insulated	200 mm	(20 +1) Nos.		
3.	Screwdriver Insulated	4mm X 150 mm, Diamond Head	(20 +1) Nos.		
4.	Screwdriver Insulated	6mm X 150 mm	(20 +1) Nos.		
5.	Electrician screwdriver thin stem insulated handle	4mm X 100 mm	(20 +1) Nos.		
6.	Heavy Duty Screwdriver insulated	5mm X 200 mm	(20 +1) Nos.		
7.	Electrician Screwdriver thin stem insulated handle	4mm X 250 mm	(20 +1) Nos.		
8.	Punch Centre	9mm X 150 mm	(20 +1) Nos.		
9.	Knife Double Bladed Electrician	100 mm	(20 +1) Nos.		
10.	Neon Tester	500 V	(20 +1) Nos.		
11.	Steel Rule Graduated both in Metric and English Unit	300 mm with precision of 1/4th mm	(20 +1) Nos.		
12.	Hammer, cross peen with handle	250 grams	(20 +1) Nos.		
B. SH	B. SHOP TOOLS & EQUIPMENT – For 2 (1+1) units no additional items are required				
(i) L	ist of Tools & Accessories				
13.	Hammer, ball peen with handle	500 grams	4 Nos.		
14.	Pincer	150 mm	4 Nos.		
15.	Spanner Adjustable drop forged, SS	150 mm & 300mm	2 Nos. each		
16.	Blow lamp brass	0.5 ltr.	1 No.		
17.	Chisel Cold	25 mm X 200 mm	2 Nos.		
18.	Chisel firmer with wooden Handle	6 mm X 200 mm	2 Nos.		
19.	Allen Key alloy steel	1.5-10 mm (set of 9)	1 Set		
20.	Grease Gun	0.5 ltr. Capacity	1 No		
21.	Bradawl		2 Nos.		
22.	Pulley Puller with 3 legs	150 mm & 300mm	1 each		
23.	Bearing Puller (inside and outside)	200 mm	1 No. each		
24.	Pipe vice Cast Iron with hardened jaw open type	100 mm	2 Nos.		

25.	Scissors blade, SS	200mm	4 Nos.
25. 26.	Scissors blade, SS	150 mm	4 Nos. 2 Nos.
27.	Scissors blade, 33	1.5 sq mm to 16 sq mm	2 Nos.
27.	Crimping Tool		
0.0	, -	16 sq mm to 95 sq mm	2 Nos.
28.	Wire Cutter and Stripper	150 mm	4 Nos.
29.	Hammer Extractor type	250 grams	4 Nos.
30.	Hacksaw frame	Adjustable 300 mm / Fixed 150 mm	2 Nos. each
31.	Try Square	150 mm blade	4 Nos.
32.	Outside Calliper	150 mm spring type	2 Nos.
33.	Inside Calliper	150 mm spring type	2 Nos.
34.	Divider	150 mm spring type	2 Nos.
35.	Pliers long nose insulated	150 mm	4 Nos.
36.	Pliers flat nose insulated	200 mm	4 Nos.
37.	Pliers round nose insulated	100 mm	4 Nos.
38.	Tweezers	150 mm	4 Nos.
39.	Snip Straight and Bent heavy duty	250 mm	2 Nos. each
40.	D.E. metric Spanner Double Ended	6 - 32 mm	2 Set
41.	Drill hand brace	0-100mm	4 Nos.
42.	Drill S.S. Twist block	2 mm, 5 mm and 6 mm set of 3	4 Set
43.	Plane cutters	50 mm X 200mm	2 Nos.
44.	Smoothing cutters	50 mm X 200mm	2 Nos.
45.	Gauge, wire imperial stainless steel marked in SWG & mm	Wire Gauge - Metric	4 Nos.
46.	File flat	200 mm 2nd cut with handle	8 Nos.
47.	File half round	200 mm 2nd cut with handle	4 Nos.
48.	File round	200 mm 2nd cut with handle	4 Nos.
49.	File flat rough	150 mm with handle	4 Nos.
50.	File flat bastard	250 mm with handle	4 Nos.
51.	File flat smooth	250 mm with handle	4 Nos.
52.	File Rasp, half round	200 mm bastard with handle	4 Nos.
53.	Copper bit soldering iron.	0.25 kg	2 Nos.
54.	De soldering Gun	Heat proof nozzle, PVC type, 250mm	4 Nos.
55.	Hand Vice	50 mm jaw	4 Nos.
56.	Table Vice	100 mm jaw	8 Nos.
57.	Oil Can	250 ml	2 Nos.
58.	Contactor & auxiliary contacts	3 phase, 415 Volt, 25 Amp with 2 NO and 2 NC	2 Nos. each

59.	Contactor & auxiliary contacts.	3 phase, 415 volt, 32 Amp with 2 NO and 2 NC	2 Nos. each
60.	Limit Switch	Limit Switch, Liver operated 2A 500v, 2-contacts	2 Nos.
61.	Rotary Switch	16 A/440v	2 Nos.
62.	Relay-		2 No. each
	a. Cut out Relays	a. 16A,440V	
	b. Reverse current	b. 16A,440V	
	c. Over current	c. 16A,440V	
	d. Under voltage	d. 360V-440V	
	e. Earth Relay	e. Up to 1 A	
63.	Pin Type, shackle type, egg type & suspension type insulators including hardware fitting		2 Nos. each
64.	Hydrometer		2 Nos.
65.	Portable Electric Drill Machine	0-12 mm capacity 750w, 240v with chuck and key	1 No.
66.	Load Bank (Lamp / heater Type)	6 KW, 3Ph	1 No.
67.	Brake Test arrangement with two	0 to 25 kg	1 No.
	spring balance rating		
68.	Out Side Micrometer	0 - 25 mm least count 0.01mm	2 Nos.
69.	Series Test Lamp	230V, 60W	4 Nos.
70.	Miniature Breaker	16 amp	2 Nos.
71.	Earth Plate	60cm X 60cm X 3.15mm Copper Plate 60cm X 60cm X 6mm GI Plate	1 Each
72.	Earth Electrode	Primary Electrode 2100x28x3.25mm Secondary Cu Strip 20x5mm	1 No.
73.	MCCB	100Amps, Triple pole	1 No.
74.	ELCB and RCCB	25Amps, double pole and 25Amps, double pole, IΔn 30 mA	1 Each
75.	Fuses	HRC – Glass - Rewire Type	4 Each
76.	Rheostat (Sliding type)	0 - 25 Ohm, 2 Amp 0 - 300 Ohm, 2 Amp 0 -1 Ohm, 10Amp 0 -10 Ohm, 5 Amp	1 No. each

77.	Capacitors	Electrolytic Ceramic Polyester film	2 Each
		Variable Dualrun	
78.	Various Electronic components	Resistors, Diode, Transistor, UJT, FET, SCR, DIAC, TRAIC, IGBT, Small transformer etc.	As required
79.	Plug socket Piano Switch Lamp Holder	230 V, 5 A	2 Each
80.	Cables: Twisted Pair Non-Metallic Sheathed Cable Underground Feeder Cable Ribbon Cable Metallic Sheathed Cable Multi- Conductor Cable Coaxial Cable Direct-Buried Cable	1 mtr each	1 Each
81.	Bus bar with brackets	1 mtr each	3 Nos.
82.	Rubber mat	2' x 4' x 1"	2 Nos.
83.	Electrician Helmet	Yellow Color	2 Nos.
84.	Safety Belt	Standard quality	2 Nos.
(ii) Lis	t of Equipment		,
85.	Ohm Meter; Series Type & Shunt Type, portable box type	50/2000-ohm analog	2 Nos. each
86.	Digital Multi Meter	DC 200mv -1000v,0 – 10A & AC 200mv- 750v , 0-10A, resistance 0- 20 MΩ and 3 1/2 digit	12 Nos.
87.	A.C. Voltmeter M.I. analog, portable box type housed in Bakelite case	Multi range 75 V - 150V - 300V - 600V	3 Nos.
88.	Milli Voltmeter centre zero analog, portable box type housed in Bakelite case	100 – 0 – 100 mV	2 Nos.
89.	Ammeter MC analog, portable box type housed in Bakelite case	0 - 500 mA, 0-5 A, 0-25 A	2 Nos. each
90.	AC Ammeter MI, analog, portable box type housed in Bakelite case	0 - 1 A, 0-5 A, 0-25 A	2 Nos. each
91.	Kilo Wattmeter Analog	0-1.5-3KW, pressure coil rating- 240v/440v, current rating-5A/10A Analogue, portable type Housed in	2 Nos.

		Bakelite case	
92.	Digital Wattmeter	230 V, 1 KW, 50 Hz	2 Nos.
93.	A.C. Energy Meter	Single Phase, 10 A, 240 V induction type	2 Nos.
94.	A.C. Energy Meter	Three Phase, 15 A , 440 V induction type	2 Nos.
95.	Power Factor Meter Digital	440 V, 20 A, Three Phase portable box type	2 Nos.
96.	Frequency Meter	45 to 55 Hz	2 Nos.
97.	Magnetic Flux Meter	0-500 tesla	2 Nos.
98.	Lux meter	lux meter LCD read out 0.05 to 7000 lumens with battery.	2 Nos.
99.	Tachometer	Analog Type - 10000 RPM	1 No.
100.	Tachometer	Digital Photo Sensor Type – 10000RPM	1 No.
101.	Tong Tester / Clamp Meter	0 - 100 A (Digital Type)	2 Nos.
102.	Megger	Analog - 500 V	2 Nos.
103.	3- point D.C. Starter	For 2.5 KW DC motor	1 No.
104.	4- point D.C. Starter	For 2.5 KW DC motor	1 No.
105.	Wheat Stone Bridge with galvanometer and battery		2 Nos.
106.	Single Phase Variable Auto Transformer	0 - 270 V, 10Amp (Air cooled)	2 Nos.
107.	Phase Sequence Indicator	3 Phase, 415 V	2 Nos.
108.	Growler	230 V, 50 Hz, Single Phase, Adjustable jaws, Testing armature with ampere meter and testing probes.	1 No.
109.	AC Starters: - a. Direct online Starter b. Star Delta Starter — Semi automatic c. Star Delta Starter — Fully automatic Star Delta Starter —Soft starter d. Auto Transformer type	For A.C Motors of 2 to 5 H.P.	1 No. each
110.	Oscilloscope Dual Trace	20 MHz	1 No.
111.	Function Generator	2 to 200 KHz, Sine, Square, Triangular 220 V, 50 Hz, Single Phase	1 No.

112.	Soldering Iron	25-Watt, 65 Watt and 120-Watt, 230 Volt	2 Nos. each
113.	Temperature controlled Soldering Iron	50-Watt, 230 Volt	2 Nos.
114.	Discrete Component Trainer	Discrete Component (for diode and transistor circuit) with regulated power supply +5,0- 5 V,+12,0-12V	2 Nos.
115.	Linear I.C. Trainer	Linear I.C. Trainer with regulated power supply 1.2V to 15V PIC socket 16pin and 20 pins with bread board	1 No.
116.	Digital I.C. Trainer	Digital I.C. Trainer 7 segment display and bread board	1 No.
117.	Oil Testing Kit	Oil Testing Kit 230 V, single phase 50 Hz 60 VA output 0-60 KV Variable	1 No.
118.	Inverter with Battery	1 KVA with 12 V Battery Input- 12 volt DC, Output- 220 volt AC	1 No.
119.	Voltage Stabilizer	AC Input - 150 - 250 V, 600 VA AC Output - 240 V, 10 A	1 No.
120.	DC Power Supply	0 - 30 V, 5 A	2 Nos.
121.	Battery Charger	0 - 6 - 9 - 12 - 24 - 48 V, 30amp	1 No.
122.	Current Transformer	415 V, 50Hz, CT Ratio 25 / 5 A, 5VA	2 Nos.
123.	Potential Transformer	415 V, 50Hz, PT Ratio, 440V/110V, 10VA	2 Nos.
124.	Pentium IV Computer or latest	2.8 GHz & above, 1 GB RAM, 80 GB HDD, DVD Combo Drive, 19/21" Monitor, optical scroll mouse, multimedia keyboard, 32 bit LAN card with UPP port, necessary Drivers, etc. OR (Latest Version)	2 Nos.
125.	Ink jet/ laser printer	,	1 No.
C. Sho	pp Machinery - For 4 (2+2) units no add	itional items are required	
126.	AC Squirrel Cage Motor with star delta starter and triple pole iron clad switch fuse with Mechanical Load.	5 HP, 3-Phase, 415 V, 50 Hz	1 No.

_			
127.	AC phase-wound slip ring Motor with starter switch	5 HP, 440 V, 3 Phase, 50 Hz	1 No.
128.	Universal Motor with starter/switch	240 V, 50 Hz, 1 HP	1 No.
129.	Synchronous motor with accessories like starter, excitation arrangements.	3 Phase, 3 HP, 440V, 50Hz, 4 Pole	1 No.
130.	Thyristor /IGBT controlled D.C. motor drive with tacho-generator feedback arrangement	1 HP	1 No.
131.	Thyristor/IGBT controlled A.C. motor drive with	VVVF control 3 Phase, 2 HP	1 No.
132.	Single phase Transformer, core type, air cooled	1 KVA, 240/415 V, 50 Hz	3 Nos.
133.	Three phase transformer, shell type oil cooled with Delta/ Star	3 KVA, 415/240 V, 50 Hz	2 Nos.
134.	Electrical Machine Trainer –	Suitable for demonstrating the construction and functioning of different types of DC machines and AC machines (single phase and three phase). Should be fitted with friction brake arrangement, dynamo meter, instrument panel and power supply unit	1 for 8 (4+4) Units
135.	Diesel Generator Set with changeover switch, over current breaker and water/air-cooled with armature, star-delta connections AC 3 phase	7.5 KVA, 415 volt or higher rating	1 No. per institute
136.	Used DC Generators-series, shunt and compound type for overhauling practice		1 No. Each
137.	Pillar Electric Drill Machine Motorized	12-20 mm Capacity, 1HP, 440V, 3 phase, Induction Motor with DOL starter, Bench Type	1 No.
138.	Motorized Bench Grinder	1 HP. 3 phase, 440V with DOL starter, Double side with smooth and rough wheel with Tool Base	1 No.
139.	A.C. Series type Motor	1 HP, 240 V, 50 Hz	1 No.
140.	Single Phase Capacitor Motor with starter switch	1 HP, 240 V, 50 Hz	1 No.
141.	Manual Motor coil Winding Machine	With step arbor	1 No.

142.	Primary current injection set	220V, 50 Hz, 1-Ф, output current - 200 A (min) with timer	1 No.
143.	Stepper Motor with Digital Controller		1 No.
144.	Shaded Pole Motor	Fractional HP, 240 V, 50 Hz	1 No.
D. Sho	p Floor Furniture and Materials - For 2	(1+1) units no additional items are requ	ired
145.	Working Bench	2.5 m x 1.20 m x 0.75 m	4 Nos.
146.	Wiring Board	3-meter x1 meter with 0.5 meter projection on the top	1 No.
147.	Instructor's table		1 No.
148.	Instructor's chair		2 Nos.
149.	Metal Rack	100cm x 150cm x 45cm	4 Nos.
150.	Lockers with drawers	4	1 for Each Trainee
151.	Almirah	2.5 m x 1.20 m x 0.5 m	1 No.
152.	Black board/white board	(minimum 4X6 feet)	1 No.
153.	Fire Extinguisher CO2	2 KG	2 Nos.
154.	Fire Buckets	Standard size	2 Nos.
E. Win	nd Turbine Components*		
155.	Old model of Wind Turbine for demonstration	55 KW to 1MW (Old Model)	1 No.
156.	Old Nacelle model to understand the Wind Turbine components assembling		1 No.
157.	Old tower Re-assembling to teach working under the Height		1 No.
158.	Old Blade model to understand the blade profile, design and technology and pitch mechanism		1 No.
159.	Gear box assembly		1 set
160.	Couplings		1 set
161.	Old Met - mast with sensors and data loggers		1 set

Note: -

- 1. All the tools and equipment are to be procured as per BIS specification.
- 2. Internet facility is desired to be provided in the classroom.
- 3. Trainees need to undergo field practice in Wind plant equipment manufacturing industries and Wind Plants. The institute should make suitable MoU with concerned Industries and plants for training the trainees' batch for 4 to 8 weeks. Only workshop equipment cannot cover all the scheduled skill sets in the syllabus under Professional Skill head.

ABBREVIATIONS

CTS	Craftsmen Training Scheme
ATS	Apprenticeship Training Scheme
CITS	Craft Instructor Training Scheme
DGT	Directorate General of Training
MSDE	Ministry of Skill Development and Entrepreneurship
NTC	National Trade Certificate
NAC	National Apprenticeship Certificate
NCIC	National Craft Instructor Certificate
LD	Locomotor Disability
СР	Cerebral Palsy
MD	Multiple Disabilities
LV	Low Vision
HH	Hard of Hearing
ID	Intellectual Disabilities
LC	Leprosy Cured
SLD	Specific Learning Disabilities
DW	Dwarfism
MI	Mental Illness
AA	Acid Attack
PwD	Person with disabilities

